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ABSTRACT

A regionalized variable is a random variable
distributed in space. With respect to nearby
variables, a regionalized variable is spatially
correlated. That is, a regionalized variable is
related to other variables as a function of the
euclidean distance separating these variables.
As the distance between two regionalized vari-
ables increases, for example, the two variables
become more dissimilar. The theory of region-
alized variables was developed to describe the
spatial relationship between regionalized vari-
ables and to used this spatial information in
estimating the value of a regionalized variable
at an unsampled location. Landsat data repre-
sent spatial variations in reflected solar flux
and the theory of regionalized variables was
employed to quantify this spatial variance and
hence demonstrate Landsat data to be regional-
ized variables. The benefit is the demonstra-
tion of a spatial processing technique based on
the spatial structure shown by the landsat data.

INTRODUCTION

Because Landsat imagery records the spatial as-
pects of reflected solar flux, it is a realistic
endeavor to preserve the spatial relationship
among pixels during image processing. Some image
processing techniques result in a degradation of
this spatial, or image, structure. As an ex-
ample, a low pass filter performed using spatial
convolution, in which the filter is established
to be a spatial average, results in a blurring of
the original image. Although this achieves noise
suppression, image clarity is sacrificed. Image
clarity might be better preserved if the spatial
structure of image pixels is used to establish
the Tow pass filter.

In another application, for temporal variability
studies that rely on Landsat imagery, spatial
registration is employed to overlay pixels,
imaged at different times, which represent aver-

age reflected flux over the same spatial areas.

One technique used for spatial registration is to
select control points in the image to be regis-

tered. A linear interpolation algorithm can then
be used to register images on the bases of these

control pointss. Often, the effectiveness of
this interpolation process degrades away from
control points. If, on the other hand, image
pixel values are spatially related, this auto-
correlation can be used to estimate radiance
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values at new spatial locations. In this fashion,
images can be precisely registered to one another
without registration error.

Apart from autocorrelation among pixels, two or
more types of spatial phenomena may be cross-
correlated. An example might be the cross-correla-
tion between Landsat bands 4 and 7, the visible
green and the near infrared portions of the
electromagnetic spectrum respectively. Cross-
correlation between spatial phenomena, such as this
example, can be exploited for image reconstruction/
restoration. One application is the restoration of
high resolution data source. For this type of
restoration, auto- and cross-correlations can be
used to estimate pixel values in the low resolution
image at spatial locations to yield a higher
resolution image.

A recently developed technique known as the theory

of regionalized variab1e59 has, as its ultimate ob-
jective, the definition of the spatial variability
of a variety of phenomena. A regionalized varijable
is a spatially correlated random variable. If
Landsat pixels (or any digitized spatial data) can
be demonstrated to be regionalized variables, the
theory of regionalized variables would be useful to
achieve the image processing applications just
described. This demonstration would additionally
define the image structure present in the Landsat
data. Hence, before the utility of the theory of
regionalized variables can be demonstrated for
image processing, Landsat pixels must first be
demonstrated to be regionalized variables.

THE THEQRY OF REGIONALIZED VARIABLES

The theory of regionalized variables was developed
by Georges Matheron in the late 1950's. Matheron
demonstrated that spatially dependent variables can
be estimated on the basis of their spatial struc-

ture and known samp1esg. This estimation is one
aspect of geostatistics, a concept concerned with
describing the distribution, in space, of geologic
phenomena.

A random variable distributed in space is said to
be regionalized. These variables, because of their
spatial aspect, possess both random and structured
components. On a local scale, a regionalized
variable is random and erratic. Two regionalized
variables separated by a distance vector, h, how-
ever, are not independent, but are related by a
structured aspect dependent upon h. Usually, as




the length of h increases, the similarity between
two regionalized variables decreases.

At first glance, a regionalized variable appears
to be a contradiction. In one sense, it is a
random variable which locally has no relation to
surrounding variables. On the other hand, there
is a structured aspect to a regionalized variable
which depends on the distance separating the
variables. Both of these characteristics can,
however, be described by a random function for
which each regionalized variable is but a single
realization. By incorporating both the random
and structured aspects of a regionalized variable
in a single function, spatial variability can be
accommodated on the basis of the spatial structure
shown by these variables.

The Varijogram

One way to examine the spatial structure of a
regionalized variable is to analytically relate the
change in samples, or measurements, of the variable
as a function of distance separating the samples.
In general, if the average difference between
samples increases as their distance of separation
increases, a spatial structure exists and the
variable is regionalized.

The function which defines the spatial correlation,
or structure, of a regionalized variable is the
variogram. The variogram is given by

Loz 2
v(h) = 2N N [Z(x) - Z(x +h)]%, (1)

where N is the total number of data pairs separated
by a distance h. The variogram is one half the
average square of the difference between samples
(Z(x)) separated by a distance, h. If a spatial
relationship exists, the value of y(h) increases

as the separation distance, h, increases. This
also implies that samples located close in space
are more similar in value than those separated by

a considerable distance.

Linear Estimation of Regionalized Variables:
Kriging

Once the spatial structure of a regionalized vari-
able has been demonstrated through computation of
the variogram, the spatial structure can be used to
estimate the value of the varjable at unsampled
locations. This estimation process is known as

krigingg.

*
The estimate, Z , of a regionalized variable at a
point, Xq is

nh~m=Z

(x) = 5 AZ(xg), (2)

i=1
where N is the number of points located within a
distance, R, of Xo each Z(xi) is the value of an

th

observation at the i~ location, and A is a vector

56

of weights, a function of intersample spatial
structure.

It is important to realize that with the theory of
regionalized variables, the expected value of

*
z (xo) is the sample mean. That is,

E[z*(xo)] =m (3)

If the actual data value at location, Xgs is de-
noted as Z(xo), the estimation error is

ER = [Z*(xo) - 2(x,)1. (4)
Moreover,
ELER] = E[Z"(x,) - Z(x,)] = 0, (5)

an optimal error. It is desirable to minimize the
variance of the estimation error and thereby maxi-
mize the accuracy of estimation. The variance of

the error VAR[ER], is expressed as7:

n

VARLER] = VAR[Z'(x,) - Z(x,)]

z -
o ZEATU(hoi)

+ A ..
.::Jz: )\1)\Jo(h”) (6)

In this equation, o? is the sample variance, and
O(hoi) and c(hij) are the point-sample and inter-

sample covariance matrices respectively. Covari-
ance is related to the variogram as:

o(h) = ¢ - v(h) (7)

where ¢? is the sample variance. By the definition
provided by Equation (7), the variation of the
error is seen to be a function of sample auto-
correlation (the variogram).

With the theory of regionalized variables, once the
variogram is defined, it is used to define the
weights, A, needed for estimation in Equation (2).

*
If the expectation of Z (xo) is the mean of the

data, the weights, A, must be constrained such that
IX = 1. These weights are the weights in Equation
6. On the basis of this equation, a Lagrangian
function can be formed to provide for a minimum
variance of the error subject to the constraint

that $A = 1. This function is?

)

= 2
L(Ai,u) o 2§A10(h0i

+ LIx Ao(h, )
i i%J iJ

- 2u(zAy - 1) (8)
1



If this equation is differentiated first with re-
spect to A, then with respect to u, a linear system
of equations results which allow A to be solved.
This equation system is:

Zaso(hss) -~ u = zolh (9)

)
i 1 ;o of

Once the weighting vector, A, is known, the kriging
variance, which is the variance of the estimation
error, is computed as

Krig Var = 02 - Z x.o(h_.) - u, (10)
i 1 01

where o2 is the sample variance, O(hoi) is point-

sample covariance, and u is a Lagrangian multiplier
to mimimize the variance of the error.

In a practical sense, the kriging variance is
analogous to the mean square error of the estimate.

THE REGIONALIZATION OF LANDSATA DATA

In practice, applying the theory of regionalized
variables to the interpretation and enhancement of
Landsat data begins by computing a variogram. For
Landsat data, a variogram should be computed for
each band; that is, the spatial variability of
reflected solar flux within each band is investi-
gated. This implies that the spatial variability
of reflected solar flux is frequency dependent;
this hypothesis was demonstrated, in part, pre-

vious1y3.

Autocorrelation among pixels is readily apparent

in the estimated variogram. For such correlation
to exist, the variogram values are small for small
distances of separation; in other words, pixels
located close together in an image are more similar
than those farther apart. Generally, the variogram
values increase with distance of separation until a
distance of separation is reached, beyond which the
variogram is flat. This is the sill of the vario-
gram and is roughly equal to the sample variance.
The distance of separation at which the sill is
reached is known as the range of the variogram.

As an initial application, variograms were computed
on sample Landsat data for bands 4 through 7.

These data were extracted from Landsat scene 21303-
16491, Aspen, Colorado, 17 August 1978. These
variograms are displayed in Figure 1 and reveal
pixels within each band to be regionalized varia-
bles. A different variogram morphology resulted
for each band, however, and this supports the hy-
pothesis forwarded earlier that the spatial
relationship among pixels is frequency dependent.

As an illustration, the variogram for band 7, shown
in Figure 1d, shows that the reflected solar flux
in the near infrared portion of the electromagnetic

spectrum has a spherica]7 spatial structure for
this Landsat scene. This variogram is linear near
the origin and attains values which approximate the
sample variance, 42, at a range of 46 pixels or 46
lines. There is, therefore, no autocorrelation
between pixels separated by more than 46 pixels or
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46 lines, yet a distinct autocorrelation exisis
within this distance.

A different spatial structure is revealed for each
band. Ficure lc, for example, shows the spatial
structure for band 6 to be similar to that for
band 7. The spatial structure for band 5, shown
in Figure 1b, albeit spherical as with the spatial
structures of bands 6 and 7, has a range of 60
pixels or lines. Hence, the spatial structure is
spatially more pronounced for this portion of the
electromagnetic spectrum.

Shorter wavelength electromagnetic energy, in this
instance the visible green portion of the EM
spectrum as represented by band 4 data, suffers
from atmospheric attenuation and additive atmos-
pheric path radiance. The varijogram for band 4 is
somewhat similar to the variogram for the other
bands near the origin. The band 4 variogram never
levels off, however, and continually increases,
although this increase is gradual for larger dis-
tances of separation. This spatial structure is

exponentia]7 rather than spherical. Because an
unique variogram is revealed for each band in the
Landsat set (this has implications for the ex-
panded set of bands associated with the thematic
mapper program), each band should be processed
individually to preserve the intrinsic frequency
dependent spatial structure.

APPLICATION OF THE THEORY OF REGIONALIZED
VARTABLES TO IMAGE PROCESSING

In a sense, the theory of regionalized variables

is similar to a technique described previous]yg.
This technique of local statistics was designed to
enhance images through a spatial filtering tech-
nique dependent upon the local mean and variance
of each pixel. This technique was also described
for noise filtering. As was noted, most image
processing techniques assume the autocorrelation
between pixels; this technique was one of the
first to explicitly define the autocorrelation.

If one recalls the premise of the theory of
regionalized varijables:

€[z (x,)] = m (3)
and

€2 (x,) - 2(x)] = 0, (4)
then

VARLZ"(x,) - Z(x))] = [27(x) - 2(x,)1" (11)

is 1ike the variogram; the autocorrelation, de-
fined by the variogram, is the local variance of
pixel values in any portion of a digital image.
Hence, the theory of regionalized variables

parallels the earlier work8, except the earlier
work is transcended to explicitly define the
autocorrelation between pixels by the variogram.




* *
— * *
= *
~ * * *
g *
3
< * VARIOGRAM
~ band ‘
mean 13
N * vanarce "
data *
1 2 1 @ 50 60 10
DISTANCE OF SEPARATION - h
Figure la
200
1601
=
= 10
* * o %
§ 4 * * * * * *
b3
< n .
© * VARIOGRAM
band §
[} mean 3
vanarxe nm
1 data *
10 n F] ) % ® 10

DISTANCE OF SEPARATION - h

Figure 1c

GAMMA (h)

GCAMMA (h)

*
L) * *
*
* = ¥
»
R »
1 *
n VARIOGRAM
band 5
1 * mean 15
" variance “
data *
1
w0 o » « P 0 m
DISTANCE OF SEPARATION - h
Figure 1b
504
j . . .
0 * *
* * *
] *
3 »
4 »
" VARIOGRAM
band 7
. mean 13
variance a
10 data *
0 F] FEREE] % & n

DISTANCE OF SEPARATION - h

Figure 1d

Figure 1. Variograms estimated using Landsat data, bands
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Spatial Filtering

One application in image processing where the
theory of regionalized variables is thought to be
useful is for spatial filtering. This process is
afforded by Equation 2, where each pixel value is
eliminated from an image, then estimated on the
basis of surrounding pixel values tempered by pixel
autocorrelation. In practice, if a data value is
to be estimated on the basis of irregularly spaced
data using Equation 2, the weights, A, would have
to be computed at each estimation location. Land-
sata data, however, are regularly spaced. Moreover,
the weights, A, needed for the solution of
Equation 2, are computed only once, because the
geometry of sample data used for estimation does
not change. Thereafter, these weights are used in
a spatial convolution context as with any box
filter type approach.

For example, the spatial structure for band 7 was
said to be spherical. The variogram for band 7

is modeled by the spherical function7:

y(h) = CO + C[1.5(h/RANGE) - 0.5(h/RANGE)*] (12)
where CO, known as the nugget value, is the

varjance of the white noise present in the Landsat
imagery; this value is the intercept of the vario-

gram at h = 0. The value, C, in Equation 12, is
o? - CO, when o? is the variance of the image
pixels. For the band 7 variogram, CO = 5, o% = 42,

C = 37 and the range = 46, and Equation 12 becomes:

v(h) = 5 + 3701.5(f) - 0.5(3)°] (13)
If it is desirable to use the theory of regional-
ized variables to establish the weights of a 3 x 3
box filter, the following geometry is established:

h=+2 h=1 h=+2
h=1 CEN h=1
h=«2Z h=1 h=+2

Recalling that o(h) = ¢® - y(h), the matrix formu-
lation, defined by Equation 9, to solve for the
weights, A, using Equation 13 to solve for y(h)
becomes:

42 36 35 36 34 35 34 33 1 35
36 42 36 35 35 34 35 34 1 36
35 36 42 34 36 33 34 35 1 35
36 3534 42 3536 3534 1| () 36
383536 3542343536 1| |a] =Y36
SRR R D N O EE
34 35 34 35 35 36 42 36 1 36
33 34 35 34 36 35 36 42 1 35
BEEEEEREETINY K

In this formulation, K = 1 for a low pass filter,

K =0 for a high pass filter, or K > 1 for a high
boost filter. Using Gauss elimination to solve for
A, the 3 x 3 box filter becomes:

0.0625 0.1875 0.0625
0.1875 0 0.1875
0.0625 0.1875 0.0625
lTow pass
K=1

These weights can be used in a spatial convolution
over the entire image. The central weight is meant
to be zero. Kriging is an exact interpolator. If
the central pixel is not excluded, kriging would
weight this pixel only and no image processing
would be achieved. It is also cautioned, most
emphatically, that these weights are functions only
of the image structure of band 7, Landsat scene
21303-16491. For other Landsat scenes, variograms
must first be computed, then modeled to yield the
weights to be used in spatial convolution.

Spatial Registration

Two digital images are precisely spatially regis-
tered if a pixel in one image represents a spatial
area identical to that of its counterpart in the
other image. One way to achieve this is to
register one corner of each raster to the same
geographic coordinate, then estimate pixel values
at the center of each cell of the rasters to be
registered. Once variograms have been computed for
each image to be registered, Equation 2 can be used
for estimation to achieve spatial registration.

This estimation procedure forms new rasters on the
basis of original image data. Moreover, by forming
new rasters, all image pixels can be registered
without loss of registration accuracy in any por-
tion of the images.

For this purpose, it is best to utilize the theory
of regionalized variables for unbiased estimation.
That is, ZA = 1, and the mean of each image remains
unchanged throughout the registration process.
Unbiased estimation, however, is identical to low
pass filtering. As with this type of filter, al-
though the image mean is unchanged, image variance
decreases. A simple pixel-by-pixel transformation
can be employed after unbiased estimation to re-
verse the image smoothing.

If Oy is the original image standard deviation and
o, is the standard deviation of the estimated
image, then the following transformation is used8:

§§Ep1xe1i’j = ow/cv(p1xe11’j - mean) + mean] (14)
where i = 1 to the number of image lines and j = 1

to the number of pixels per line. This transforma-
tion does not require knowledge of pixel values
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surrounding pixeli j°

Utilizing the theory of regionalized variables for
spatial registration can, as with spatial filter-
ing, exploit the regular geometry of the original
data in the estimation process. This facilitates
computation by allowing the weights, A, of
Equation 2 to be computed only when the geometry
of the data used for estimation changes. This oc-
curs most often at the perimeter of images to be
registered, especially if the original images are
distorted geometrically.

In overview, however, the theory of regionalized
variables offers an alternative to the control

point method algorithm for spatial registrations.
With the theory of regionalized variables, the
center of the pixels of each image to be registered
must be assigned coordinate values relative to the
final, registered images. This can be done, how-
ever, on the basis of only one control point per
image. Hence, this technique does not require as
many control points as other techniques. In
addition, if desired, the theory of regionalized
variables can provide two operations simultaneous-
ly, spatial registration and spatial filtering.

Image Restoration Through Joint Estimation

As intended for this discussion, the objective of

image restoration is to estimate an original image
given a degraded image and some knowledge about the
operator used to obtain the original image from the

degraded images. The following discussion is di-
rected toward the application of restoring high
resolution in coarse resolution data on the basis
of other high resolution data sources. The opera-
tor described above, then, is the cross-correlation
between the coarse data source with the other high
resolution data sources. This is particularly
directed toward the design of multiple band digital
data acquisition systems as opposed to using image
restoration to correct for degradations that
occurred during the image acquisition process, such

as described before ’5. Such restoration applica-
tions would be advantageous if some bands of a
multiple band system are designed for coarse reso-
lution acquisition as a means of minimizing the
amount of data generated.

In the design of the operator for this type of
image restoration, a regionalized variables tech-

nique known as co—kriging4’10 is especially useful.

Like kriging, co-kriging is a weighted average,
linear estimator, yet, unlike kriging, yields
estimates of several variables simultaneously.
This joint estimation process relies on within-
image pixel autocorrelation and between-image pixel
cross-correlation. Moreover, this technique is
specially developed for the estimation of coarsely

sampled data using batter sampled variab1es7.

For co-kriging, Equation 2 is slightly modified
to account for the multiple variable estimation4:

N -
5 Z(x.)T. (15)

where i*(xo) = (Zf(xo), Z;(xo), ..

o Znlxg))s (16)
and m is the number of variables to be estimated at

location, Xy and N is the number of known data

locations used in the estimation process.
Co-kriging is additionally associated with a com-
plex form of Equation 9 for the solution of Fj.

Also, co-kriging is an unbiased estimator, there-
fore:

1Fj =1, (17)

W~ =

J

a unit matrix. In the equations above, both Fj and

I are m x m matrices. Keeping in mind the con-
straint imposed by Equation 17, Equation 9 can be

rewritten to becomelo:

U =D (18)
where
Chiy) .+ . Clhip) 1
U=
Clhny) . . Clhpn) 1
L I ... 10 (19)

Y=t .and D= (T(hg))

Tn C(hon)
\ 1/ \ 1 /

In Equation 9, C, T, u, and I are each m x m matri-
ces. Hence, co-kriging involves the use of
matrices and vectors whose entries are themselves
matrices. This submatrix structure must be main-
tained through equation solution to solve for T.
This complex procedure for equation solution was

easily overcome4.

Pixel cross-correlation is accounted for in co-
kriging by the matrices, C, in Equation 17. Each
matrix, C, has the form:




"

(20)

Cpa(h) « . . Cpp(h)

Here, Cii(h) is the covariance value evaluated for

a distance, h, using the variogram for band i.
The cross-covariance values, Ci.(h), are evaluated
using the equation: J

C..(h)

" (21)

= 0.5[C75(h) - C;(h) - C5(h)]

where, C:j(h) = 02, = vy4(h) (22)

J 1]

In Equation 22, Yij(h) is the cross variogram com-

puted for bands i and j. To obtain a cross vario-
gram , a new variable is formed which is simply
i+ Jj, and a variogram is computed using Equation
1 on this sum. This cross variogram establishes
the cross-correlation between bands or between
images.

For image restoration using co-kriging, m vario-
grams and m(m-1)/2 cross-variograms are required
for the estimation of m variables per location.

To restore high resolution in a coarse resolution
data source, provided each data source is regis-
tered to the others, the estimation locations can
be chosen as the pixel locations of the high
resolution source. A box filter type approach can
be used as described for spatial filtering, with a
zero weight on the central pixel (the estimation
location). If the data sources are registered,
e weights, T', need to be computed only once.
After these weights are determined, a spatial con-
volution approach can then be used to restore the
resolution to the coarse resolution data.

CONCLUSION

Applying the theory of regionalized bariables to
image processing simply offers a new approach to
the solution of old problems. In this sense, per-
haps the state-of-the-art on image processing is
not advanced. Today, in the field of research in
image processing, the demand is for the develop-
ment of automated processing procedures. At
present, the application of the theory of region-
alized variables to image processing requires
operator interaction and this is not automated.
This theory is predicated on the definition of the
spatial structure (the variograms) inherent to
images and operator interaction is needed for the
interpretation of these variograms. This is im-
portant because the theory of regionalized
variables is founded on explicitly defined pixel
autocorrelation, not on assumed pixel structure.
After many Landsat images have been analyzed
through the use of variograms, however, perhaps
the modeling of the variograms, and hence the ap-
plication of the theory of regionalized variables
for image processing, can be automated.
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